Chapter

PrintPrint

This method is applicable for squaring of numbers with unit digit 5.  Ekadhikena-purvena literally means by one more than the previous one.

Example 1:  752   = (7 x 8)/52

                           =  5625

Step 1:  Multiply the previous number 7 (before 5) by its next number 8 and write the product 56 in the LHS of the answer

Step 2:  Always write 25 in the RHS of the answer

Step 3:  Combine LHS and RHS to obtain the final answer 5625

Note:  There is no carry over in this method.

Example 2:          

152 =  (1 x 2)/52  

      =  225

 

252 = 2 x 3/52

      = 625

 

352 = (3 x 4)/52

      =  1225

 

452 = (4 x 5)/52

      = 2025

 

552 =  (5 x 6)/52

      =  3025

 

652 = (6 x 7)/52

      = 4225

 

752  = (7 x 8)/52

       = 5625

 

852 = (8 x 9)/52

      =  7225

 

952  =  (9 x 10)/25

       =  9025

This Method is applicable for square of any number with unit digit 5

Example  

1052 = (10 x 11)/52

        =  11025

1152 =  (11 x 12)/52

       =   13225

9952  = (99 x 100)/52

         = 990025

10052  = (100 x 101)/52

           = 1010025

Exercises:

1252  = 15625

1752  = 30625

2252  =  50625

37.52  =  1406.25 (Remember the decimal rule)

2452  =  60025

5052  =   255025

9252   =   855625

10152 =   1030225

11152  =   1243225

12352  =   1525225

Corollary:

The principle of Ekadhikena Purvana can also be applied to multiplication of numbers, under certain conditions.

Example 1:  34 x 36 = (3 x 4)/(4 x 6)

                               = 1224 

Here two conditions have to be satisfied.  First, the sum of the unit digits of the numbers should be equal to 10. Secondly, the previous number (before the unit digit) should be same in both the numbers.

Step 1:  Multiply the previous number by 1 more than itself and write the product in LHS of the answer (3 x 4 = 12 in this case)

Step 2:  Multiply the unit digits of both the numbers and write the product in the RHS of the answer (4 x 6 = 24 in this case)

Note that the RHS should always contain two digits.

Step 3:  Combine RHS and LHS to obtain the final answer as 1224 in this case.

Example 2:  22 x 28 = (2 x 3)/(2 x 8)

                               = 616

Example 3:  23 x 27 = (2 x 3)/(3 x 7)

                               = 621

Example 4:  31 x 39 = (3 x 4)/(1 x 9)

                               = 1209 (Note 9 is written is 09 to make it two digits in the RHS)

Example 5:  44 x 46 = (4 x 5)/(4 x 6)

                               = 2024

Example 6:  53 x 57 = (5 x 6) /(3 x 7)

                               = 3021

Example 7:  81 x 89 = (8 x 9)/(1 x 9)

                              = 7209

Example 8:  112 x 118 = (11 x 12)/(2 x 8)

                                  = 13216

Example 9:  244 x 246 = (24 x 25)/(4 x 6)

                                  = 60024

Example 10:  993 x 997 = (99 x 100)/(3 x 7)

                                    = 990021

 

Course: