Chapter

PrintPrint

This chapter has two methods for squaring.

  • Method 1:  Squaring by the base method
  • Method 2:  Squaring by using the general formula

Before learning these methods the basic squares of numbers 1 to 10 must be memorized by the students.  For your convenience we are providing them:

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

102 = 100

Method 1:  Squaring by the base method

Example 1:  122 = (12 + 2)/22 = 14/4 = 144

Step 1:  Select the closest base 10

Step 2:  Calculate the difference 12 – 10 = +2

Step 3:  In the LHS add +2 to 12 (i.e 12+2=14)

STEP 4:  In the RHS write the square of the difference (22 = 4)

Step 5:  Combine the LHS and RHS to obtain the final answer as 144

Note:  The rule of carry over states that the number of digits in RHS must be equal to the number of zeros in the base.  This rule must be followed here.

Example 2:  142 = (14 +4)/42

                         = 18/16

                         = (18 + 1)/6

                         = 196 (Note that 1 is carried over)

Example 3:  1042 = (104 +4)/42

                                   = 108/16

                           = 10816

Example 4:  1022 = (102 + 2)/22

                                   = 104/04

                           = 10404

Example 5:  10122 = (1012 + 12)/122

                                      = 1024/144

                             = 1024144

Example 6:  942 = (94 – 6)/(-6)2

                                 = 88/36

                         = 8836 (note here the difference was negative because 94 is lower than the base 100.)

Example 7:  9872 = (987-13)/(-13)2

                          = 974/169

                          = 974169

Example 8:  842 = (84 -16)/(-16)2

                                = 68/256

                        = 7056 (Note here that 2 is carried over to LHS)

Example 9:  9912 = (991 - 9)/(-9)2

                                  = 982/081

                          = 982081

Example 10:  882 = (88 - 12)/(-12)2

                           = 76/144

                           = 7744  (Note that 1 is carried over)

We can conclude that in the LHS the number has to be increased or decreased by the respective difference from the base.  In RHS we have to set up the square of the difference. 

Exercises:

132 = 169

162 = 256

1062 = 11236

1092 = 11881

1132 = 12769

10022 = 1004004

10082 = 1016064

10112 = 1022121

10212 = 1042441

10242 = 1048576

912 = 8281

972 = 9409

982 = 9604

9922 = 984064

9892 = 978121

97.62 = 9525.76

98.72 = 9741.69

99.42 = 9880.36

98.12 = 9623.61

99.882 = 9976.0144

 

Method 2:  Squaring by using the general formulae.

The general formula for square of any two digit number ab (here a is the 10th digit and b is the unit digit.)

Example 1

         = 441

 

         

          (note the carry over)

 

         

          

 

         

         

 

       

         (Note that 6 is carried over from the right box to the middle box and 11 is carried over from the middle box to the left box).

Exercises:

222  =  484

23 =  529

362  = 1296

412  = 1681

542  =  2916

632  =  3969

772  =  5929

842  =  7056

882  =  7744

912   = 8281

932   = 8649

9.42  =  88.36 (Note the placing of the decimal after two digits from the right).

962    =  9216

972    =  9409

992  =  9801

 

Method 2:  General formula for squaring of any 3 digit number [abc].  Here a is the 100th digit, b is the 10th digit and c is the unit digit.

 

Examples

         

         

 

          

          

 

           

            (Note the placing of the decimal after two digits from the right in the answer as the question contained the decimal after one digit from the right.  You simply double it).

Exercises:

3122  =  97344

4312  =  185761

3242  =  104976

4222  =  178084

7862  =  617796

3522  =  123904

4542  =  206116

2.512  = 6.3001

5.222  = 27.2484

0.5332 = 0.284089

2222   =  49284

7772    =  603729

Course: